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Abstract. Doubly heavy baryons, i.e., the baryons containing two heavy quarks are treated in the adiabatic
approximation, considering the motion of the light quark as a relativistic motion. The binding energy and
mass spectra of doubly heavy baryons are calculated solving the two-center Dirac equation the one-centre
Schrödinger equation for Coulomb plus linear potential. The binding energy of the light quark as a function
of the distance between heavy quarks is found.

PACS. 12.40.Yx Hadron mass models and calculations – 14.65.-q Quarks – 12.39.Pn Potential models –
03.65.Ge Solutions of wave equations: bound states

1 Introduction

The baryons containing two heavy quarks are becom-
ing the subject of extensive theoretical study in recent
years. Such an interest can be explained by the forth-
coming experiments on the observation of doubly heavy
baryons. The succesfull experiments at the Collider De-
tector at Fermilab Collaboration on the observation of the
Bc-meson [1] gives some hope to observing baryons con-
taining two heavy quarks, also. Considerable progress has
been made in the understanding of spectroscopy and other
properties of doubly heavy baryons since 1989 when the
first paper [2] with detailed treatment of such baryons ap-
peared [3–14]. Considerable amount of work is devoted to
treatment using QCD approach [11,15]. Important point
in the study of the properties of doubly heavy baryons
is the calculation of their mass spectra and wave func-
tions. Up to now such calculations have been done us-
ing various approaches [2,9,10,12]. In [10] the spectra of
baryons containing two heavy quarks is calculated using
the nonrelativistic quark model with the potential given
by Buchmuller-Tye [16] that divides the QQq system to
QQ diqark and the light quark. In this case one obtains
central-symmetric two-body potential for the description
of three-particle QQq system. Another approach is the cal-
culation of QQq baryon spectra in the framework of the
potential model [2–4,12], considering it as a three-particle
system. In this case it can be considered as an analogue
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of the hydrogen molecular ion and one needs to solve the
two-center wave equation [12]. Within the potential model
approach one should choose a Coulomb plus a confining
potential. This method deals with the spectroscopy of the
doubly heavy baryons accounting for the relativistic mo-
tion of the light quark using the Dirac equation approach.
We treat QQq baryon within the Born-Oppenheimer ap-
proximation solving first the Dirac equation with two-
center Coulomb plus linear potential. After this we solve
the Schrödinger equation with central Coulomb plus linear
plus the (light quark) energy term to account for the re-
coil motion of the heavy quarks and calculate the binding
energy spectra of the QQq baryons with various quark
compositions. Most of the work on the spectroscopy of
the doubly heavy baryons does not use the adiabatic ap-
proximation, since this leads to additional difficulties with
solving two-center wave equations with Coulomb plus con-
fining potential for which variables cannot be separated
even in the nonrelativistic case (excluding the two-center
Coulomb plus harmonic-oscillator potential). In the case
of two-center Dirac equation, variables cannot be sepa-
rated even for pure Coulomb potential. This fact makes it
very difficult to solve the two-center Dirac equation with
Coulomb plus confining potential. In this paper we use
an approach elaborated for solving relativistic two-center
Coulomb problem in our recent paper [17]. This approach
is based on the relativistic generalization of the method of
linear combination of atomic orbitals (LCAO). For our cal-
culations we use the recently obtained [18] exact ground-
state wave functions of the one-center Dirac equation for
Coulomb plus linear potential. This allows one to solve
the relativistic two-center problem for Coulomb plus lin-
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ear potential with the same success as in the case of two-
center problem for pure Coulomb potential [17]. It should
be noted that no effects related with spin-orbit or spin-
color interaction are considered in this paper. For describ-
ing quark-quark interaction we use Coulomb plus linear
potential which is a more realistic quark-quark potential
(see [19] and references therein). This paper is organized
as follows: in sect. 2, an outline of the adiabatic approxi-
mation for QQq baryon is given. In sect. 3 the solution of
two-center Dirac equation with Coulomb plus linear po-
tential is presented. In sect. 4, the Schrödinger equation
describing the recoil motion of heavy quarks is solved to
calculate the mass spectra of doubly heavy baryons with
various quark compositions.

2 Adiabatic approximation for doubly heavy
baryons

The Hamiltonian of QQq system that includes the rela-
tivistic motion of the light quark is written as

H = Hq + HQQ, (1)

where

Hq = �α�pq + β(mq + Vconf(r,R)) + VCoul(r,R)− 2V0 , (2)

(the system of units � = c = 1 is used) is the Hamiltonian
describing the motion of light quark in the field of two
heavy quarks. Here �α and β are the usual Dirac matrices,
the confining potential is given by

Vconf(r,R) = λ(r1 + r2),

with

r1,2 = |�r ± �R| =
√

r2 ± 2�r �R + R2,

where 2R is the distance between heavy quarks, and the
Coulomb potential energy is

VCoul(r,R) = −Z

r1
− Z

r2
,

with r1,2 =| �r ± �R | are the distances between light quark
and heavy quarks.

Here V0, λ and Z = 2
3αs are the parameters of the

quark-quark interaction potential [12], with Z being the
charge of the heavy quarks. Note that the factor 2/3 arises
from color matrices.

The Hamiltonian HQQ describes the motion of one
heavy quark in the field of another one

HQQ = − 1
2M̄QQ

∆R + V (R), (3)

with

V (R) = −Z

R
+ λR.

In the adiabatic approximation the wave function for
doubly heavy baryons is split into light and heavy degrees
of freedom and can be represented as

Ψ(r,R) =
∑

n

φn(R)Φn(r,R) .

Then QQq system will be described by following two wave
equations:[

�α�pq + β(mq + Vconf(r,R)) + VCoul(r,R) − 4
3
V0

]
×Φ(r,R) = E(R)Φ(r,R) (4)

and[
− 1

2M̄QQ
∆R + Vconf(R) + VCoul(R) + E(R) − 2

3
V0

]
×φ(R) = εφ(R), (5)

where ε is the binding energy of the QQq baryon. Thus,
the problem of finding the binding energy spectra of dou-
bly heavy baryon consists of two parts: the problem of
solving the two-center Dirac equation and the problem of
solving the Schrödinger equation accounting for the recoil
motion of heavy quarks. The next section is devoted to the
solution of the two-center Dirac equation with Coulomb
plus linear potential.

3 Two-center Dirac equation for Coulomb
plus linear potential

The motion of the light quark in the field of two heavy
quarks is described by the two-center Dirac equation with
Coulomb plus linear potential. To find a solution of the
two-center Dirac equation is a difficult mathematical prob-
lem even in the case of a pure Coulomb potential, since
the variables cannot be separated. This makes it impossi-
ble to find an exact solution of the two-center Dirac equa-
tion. It can be solved only approximately asymptotically
or by variational methods. Presently several methods us-
ing approximate and variational approaches for solving
this equation are available. Recently, the Dirac equation
for two-center Coulomb potential was solved by the finite-
set basis function method [20,21]. Several methods for
aproximate analytical and numerical solution of the two-
center Coulomb-Dirac equation have been elaborated by
Popov and co-workers [22–24]. The two-center Coulomb-
Dirac equation was solved by the relativistic generaliza-
tion of the LCAO method [17]. In this paper for a solu-
tion of the two-center Dirac equation with Coulomb plus
linear potential we will use the LCAO method. Thus, the
equation we wish to solve is (mq = � = c = 1)

HΨ(r1, r2) =
[
�α�pq + β(1 + λ(r1+r2))− Z

r1
− Z

r2

]
×Ψ(r1, r2) = E(R)Ψ(r1, r2) . (6)

We will consider the light quark as being in the ground
state, since the exact wave functions for corresponding
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one-center problem available only for this case. For solving
it by LCAO method we choose the wave function in the
form [17]

Ψ = d1Ψ1 + d2Ψ2 , (7)

where Ψ1(Ψ2) is the wave function of the light quark in the
field of the first (second) center, i.e., the solution of the
one-center Dirac equation for Coulomb plus linear poten-
tial

d1 = d2 = d =
1√

2(1 + S)
, (8)

S = 〈Ψ1|Ψ2〉 = 〈Ψ2|Ψ1〉, is the overlap integral.
Then the energy of the light quark can be calculated

as
E = 〈Ψ | H | Ψ〉, (9)

where 〈Ψ | = [φ, χ] and |Ψ〉 =
[
ϕ
χ

]
are defined by (7).

As a solution of the one-center Dirac equation we use a
nice result due to Franklin [18], where a simple (but exact)
ground-state Dirac wave function for Coulomb plus linear
confinement was obtained. It can be written as

ϕj = Arb−1
j e−arj e−

1
2 αr2

j

[
1
0

]
≡ Afj

[
1
0

]
, (10)

χj = −iAγrb−1
j e−arj e−

1
2 αr2

j

[
cos θ

eiϕ sin θ

]
≡

−iAγfj

[
cos θ

eiϕ sin θ

]
, (11)

where fj = rb−1
j e−arj e−

1
2 αr2

j (j = 1, 2) is the radial part
of the wave function with

A =
(2α)

3
4

e
a2
4α

√
1 − b

8π(2b + 1)
(2α)b−1

D−(2b+1)( 2a√
2α

)

being the normalizing constant. The constants a, b and γ
are given as

a = Q, b =
√

1 − Q2, γ =
Q

b − 1
, α =

√
Qµ ,

with D−(2b+1) being the parabolic cylinder function [25].
Note that the functions ϕj , and χj , are the solution of the
one-center Dirac equation with potential

V (r) = −Q

r
+ µr,

with parameters +Q and µ different from the ones of the
potential in eq. (6) and may be considered as variational
parameters. Calculating the energy E, eq. (9), we obtain

E(R) = (2πA2R2bc)(1 − 2πA2R2b+1cI4)−1[bR(I3 + I4)
+2ZbR2(I5+I6)+2λ(I2+I7)−Z(I1+I2)] , (12)

Fig. 1. The binding energy term of the light quark in the field
of two heavy quarks calculated using the formula (12). The
system of units mq = � = c = 1 is used.

where c = 2/(b−1), and integrals I1, I2, ..., I7 are defined
as follows:

I1 =
∫ ∞

1

∫ 1

−1

(ξ − η)(ξ + η)2b−2e−R(ξ+η)(2a+αR(ξ+η)) dηdξ ,

I2 =
∫ ∞

1

∫ 1

−1

ξ(ξ2 − η2)b−1e−R(2aξ+αR(ξ2+η2)) dηdξ ,

I3 =
∫ ∞

1

∫ 1

−1

(ξ − η)(ξ + η)2b−1e−R(ξ+η)(2a+αR(ξ+η)) dηdξ ,

I4 =
∫ ∞

1

∫ 1

−1

(ξ2 − η2)be−R(2aξ+αR(ξ2+η2)) dηdξ ,

I5 =
∫ ∞

1

∫ 1

−1

ξ(ξ−η)(ξ+η)2b−1e−R(ξ+η)(2a+αR(ξ+η)) dηdξ ,

I6 =
∫ ∞

1

∫ 1

−1

ξ(ξ2 − η2)be−R(2aξ+αR(ξ2+η2)) dηdξ ,

I7 =
∫ ∞

1

∫ 1

−1

ξ(ξ + η)2b−2e−R(ξ+η)(2a+αR(ξ+η)) dηdξ .

Thus the energy of the light quark in the field of two
heavy quarks is expressed by these 7 integrals which, un-
fortunately, cannot be calculated exactly analytically and
must be evaluated numerically. The behaviour of E(R) for
small and large R can be estimated analytically. For small
R, we have

E(R)=
2b

αb+ 1
2

2πA2cΓ (b+ 1
2 )

− 1

[
1 +

2bλ√
α

Γ (b)
Γ (b + 1

2 )

+
Z(4α)b+ 1

2

4b2(2b + 1)Γ (b + 1
2 )

R2b+
2Γ (b)

3Γ (b + 1
2 )

√
αλR2

]
,

and, for large R, E(R) is estimated to be

E(R) =
2πA2cb

αb+ 1
2

[
2λΓ

(
b +

1
2

)
R − Γ

(
b +

1
2

)

− 5λ√
α

Γ (b + 1)
]

.
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Table 1. The mass spectrum of ccq baryon (in GeV) calculated by solving eq. (13); mq = 0.385 GeV mc = 1.486 GeV n,
αs = 0.32, λ = 0.2 GeV2, V0 = −0.1 GeV, n and l are the principal and orbital quantum numbers of cc diquark, respectively.

n l 0 1 2 3 4 5 6

1 3.241 3.335 3.460 3.617 3.804 4.022 4.271
2 3.346 3.482 3.649 3.848 4.077 4.338 4.629
3 3.492 3.670 3.880 4.120 4.392 4.695 5.028
4 3.681 3.901 4.152 4.435 4.748 5.093 5.469
5 3.911 4.173 4.467 4.791 5.148 5.534 5.952
6 4.184 4.488 4.823 5.189 5.587 6.016 6.476
7 4.498 4.844 5.221 5.629 6.069 6.540 7.042
8 4.854 5.242 5.661 6.111 6.593 7.106 7.650
9 5.252 5.682 6.143 6.635 7.159 7.714 8.300
10 5.692 6.164 6.667 7.201 7.767 8.363 8.991
11 6.174 6.688 7.233 7.809 8.416 9.055 9.725
12 6.698 7.254 7.840 8.458 9.108 9.788 10.500
13 7.264 7.861 8.490 9.150 9.841 10.564 11.318
14 7.872 8.511 9.181 9.883 10.616 11.381 12.179
15 8.521 9.202 9.915 10.658 11.434 12.240 13.078

Table 2. The mass spectrum of bbq baryon (in GeV) calculated by solving eq. (13); mq = 0.385 GeV mb = 4.88 GeV, αs = 0.22,
λ = 0.2 GeV2, V0 = −0.1 GeV, n and l are the principal and orbital quantum numbers of bb diquark, respectively.

n l 0 1 2 3 4 5 6

1 10.158 10.397 10.715 11.112 11.587 12.141 12.774
2 10.424 10.769 11.194 11.698 12.281 12.942 13.682
3 10.796 11.248 11.780 12.390 13.080 13.848 14.695
4 11.275 11.833 12.471 13.188 13.985 14.860 15.814
5 11.860 12.525 13.270 14.093 14.996 15.978 17.039
6 12.551 13.323 14.173 15.104 16.113 17.202 18.370
7 13.349 14.227 15.184 16.221 17.337 18.532 19.807
8 14.253 15.238 16.301 17.444 18.667 19.969 21.350
9 15.264 16.355 17.525 18.774 20.103 21.512 23.000
10 16.381 17.578 18.854 20.210 21.646 23.161 24.755
11 17.605 18.908 20.291 21.753 23.295 24.917 26.617
12 18.934 20.344 21.833 23.402 25.051 26.778 28.586
13 20.370 21.886 23.482 25.157 26.912 28.747 30.661
14 21.913 23.535 25.237 27.019 28.880 30.821 32.842
15 23.562 25.291 27.099 28.987 30.955 33.002 35.129

In fig. 1 the dependence of the energy term E(R) on R,
calculated by minimizing E(R) over Q and µ is plotted.
The following potential parameters are chosen for these
calculations: αs = 0.4, λ = 0.25GeV2. They are consis-
tent with the values for αs = 0.4 and λ = 0.25GeV2

obtained in other calculations that include a heavy quark
[8,19]. It is clear that the binding energy of light quark in
the fields of two heavy quarks increases by increasing the
distance, R, between heavy quarks. Such a behaviour is
to be considered as a consequence of confinement.

4 Spectra of doubly heavy baryons

In this section mass spectra of doubly heavy baryons
with various quark compositions are calculated. As was
mentioned above the binding-energy spectra of the three-
quark system in the adiabatic approximation can be cal-

culated by solving the Schrödinger equation[
− 1

2M̄QQ
∆R + Vconf(R) + VCoul(R) + E(R)

]
φnl(R) =

εnlφnl(R), (13)

where E(R) is defined by (12) n and l are the principal
and orbital quantum numbers QQ system.

Solving this equation numerically we obtain the bind-
ing energy spectra of QQq system. Then the mass spectra
can be calculated by the formula

Mnl = MQQ + mq + εnl . (14)

In tables 1, 2 and 3 the mass spectra of ccq, bbq and
bcq baryons are calculated solving eq. (13) numerically
and then using formula (14) are presented, respectively.
In our calculations we use different values αs for cc, bb
and bc potentials. The values of the constants αs, λ, and
V0 for the potential

V (r) =
2
3

[
−αs

R
+ λR + V0

]
,
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Table 3. The mass spectrum of bcq baryon (in GeV) calculated by solving eq. (13); mq = 0.385 GeV mc = 1.486 GeV and
mb = 4.88 GeV, αs = 0.30, λ = 0.2 GeV2, V0 = −0.1 GeV, n and l are the principal and orbital quantum numbers of bc
diquark, respectively.

n l 0 1 2 3 4 5 6

1 6.693 6.852 7.064 7.329 7.646 8.015 8.437
2 6.870 7.101 7.384 7.720 8.108 8.549 9.042
3 7.118 7.420 7.774 8.181 8.641 9.153 9.718
4 7.438 7.810 8.235 8.713 9.244 9.828 10.464
5 7.828 8.271 8.767 9.316 9.918 10.573 11.280
6 8.289 8.803 9.370 9.990 10.663 11.389 12.168
7 8.820 9.406 10.044 10.735 11.479 12.276 13.126
8 9.423 10.079 10.788 11.551 12.366 13.234 14.154
9 10.097 10.824 11.604 12.437 13.323 14.262 15.254
10 10.842 11.640 12.491 13.395 14.352 15.362 16.425
11 11.657 12.526 13.448 14.423 15.451 16.532 17.666
12 12.544 13.484 14.476 15.522 16.621 17.773 18.978
13 13.501 14.512 15.576 16.693 17.863 19.085 20.361
14 14.530 15.611 16.746 17.934 19.175 20.469 21.815
15 15.629 16.781 17.987 19.246 20.558 21.922 23.340

are given in each table. Again the choice of parameters
is consistent with the values previously chosen by other
authors [8]. It is possible that for cc and bb systems, the
parameters will change somewhat but it is expected that
such an effect will be small. As is seen from these ta-
bles, our calculations are in good accordance with the re-
sults of [10]. Note that this potential does not include any
terms, describing spin-orbit, spin-color interactions.

5 Conclusion

In this work the doubly heavy baryon is treated in the
adiabatic approximation, with the light quark being in a
relativistic motion. This required solving

a) a two-center Dirac equation with Coulomb plus linear
potential and

b) the Schrödinger equation with Coulomb plus linear po-
tential plus the energy term of light quark in the field
of two heavy quarks.

The mass spectra are displayed for the case of nq = 1
and lq = 0 (where nq = 1 and lq = 0 are the princi-
pal and orbital quantum numbers of the light quark) and
using a specific set of potential parameters that are consis-
tent with previous attempts of calculations with two heavy
quarks. The variations of these parameters will change the
spectra, but it is anticipated that changes in αs for bbq,
bcq and ccq will be small. It should be emphasized again
that the spin-spin and spin-orbit interactions would define
the baryon spectra that can be compared with experiment.
The present work may be viewed as an attempt to explore
the spectra using the Dirac equation compared to working
with the Schrödinger equation for the light quark. More
realistic calculations that include the role of spin and color
effects are needed. It is to be hoped that experiments at
Fermilab and CERN would undertake such a study to help
establish the technique discussed here for obtaining a real-
istic baryon spectrum. In such a case a careful study with

a variation of the parameters αs and λ need to be carried
out to understand QCD of small energies and momenta.
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